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A frustrating observation, based on an Rmin variance analysis within the ‘shake

and bake’ framework of direct methods phasing, is described. The variance of

Rmin can on occasion identify large subsets of phases that have a significantly

lower mean phase error than the entire direct methods phase set of otherwise

unsuccessful phasing trials for which the overall phase error occasionally dips

below 75 or 80�. This is the first time, other than for a handful of �1 phase

indications in optimal situations, that a priori phase estimates have been

attained for large numbers of E values, prior to solving the structure. Although

the a priori variance of Rmin is a useful tool for identifying such phases, the a

posteriori phase refinement shifts indicated by its minimum often prevent a

successful convergence to the solution. Similar efforts to encourage solution

convergences in the realm of real space have also been discouraging.

1. Introduction

‘How wonderful that we have met with a paradox. Now we have

some hope of making progress.’ (Niels Bohr)

The shake-and-bake (SnB) direct methods phasing proce-

dure (Hauptman, 1988; DeTitta et al., 1994; Weeks et al., 1994)

has provided a significant improvement over older direct

methods phasing procedures based on the tangent formula

(Karle & Hauptman, 1956). In this regard the SnB program

can more or less routinely solve crystal structures that are five

to ten times larger than those previously solved by tangent

formula methods. Given this success, there is a great tempta-

tion to conclude that the SnB algorithm cannot be significantly

improved over what has already been demonstrated. New

findings now raise the intriguing possibility that there may

be more to be learned and gained with regard to increasing

the success rate and range of convergence of the SnB phasing

algorithm.

2. Background

All direct methods program applications have generally been

viewed as ‘all or nothing’ calculations that will either produce

a recognizable solution, as indicated by reliable figures of

merit, or will not, given the particular number of phase trials

examined. A direct methods failure is often addressed by

increasing the number of trials in a renewed attempt to find a

different starting set of phases with the potential to converge

to the correct solution. Changing the number of E values used

to generate the triples phase relations, and the number of

accepted triples based on the magnitude of the A values,

can also sometimes be effective. Cosine invariant analysis

(Hauptman, 1972) has also been occasionally used on difficult

structures (Langs, 1993) to avoid suspected aberrant phase

relationships and help ensure a more successful outcome, but

they have not been accepted as a general method of choice.

If direct methods have been used unsuccessfully, usually

nothing is to be gained by further examining those phase sets

that have failed to produce a solution. An exception to this is

the situation where a chemically meaningful fragment of the

expected structure has been recognized from a non-solution E

map (Karle, 1968) and, if need be, repositioned in the cell

by translation function methods (Rossmann, 1990). Tangent

formula or SnB recycling methods can then be used to solve

the structure from the phases of the partial structure if that

fragment has been correctly placed.

SnB is different from tangent formula methods in that it

refines phases in both real and reciprocal space, whereas the

tangent formula operates completely in reciprocal space.

Moreover, the phase refinement target function for SnB in

reciprocal space is R(’h), the triples cosine invariant residual

that is defined as

Rð’hÞ ¼
P

k

Ah;k½cosð’h þ ’k þ ’�h�kÞ

� I1ðAh;kÞ=I0ðAh;kÞ�
2=
P

k

Ah;k;

where Ah,k = 2�3|EhEkE�h�k|/�3=2
2 , �n =

P
j¼1;N f n

j , fj are the N

atomic form factors representing the contents of the primitive

unit cell, and In are the nth-order Bessel functions of the real

argument. Here the ratio I1(Ah,k)/I0(Ah,k) represents the direct



methods expectation value of cos(’h + ’k + ’�h�k) derived

by Hauptman (1966) based on its A value. For an N-atom

structure determination, one usually selects ca 10N E values

and 100N triple phase invariants as the basis of phase refine-

ment by the R(’h) function.

An SnB phasing trial begins with randomly generating

coordinates for an N-atom structure and using those positions

to compute the initial phase values. Those phases are next

refined by minimizing R(’h), for each phase ’h, while all

others, ’k and ’�h�k, are temporarily held fixed until it is their

turn to be refined. One of the simplest refinement schemes

simply increments the value of ’h by 0, �90 and 180�, and

accepts the value that produces the lowest value of R(’h).

Once all the phases have been adequately refined in this

manner, an E map is computed and the N largest peaks are

then chosen as the starting point for the next cycle of refine-

ment. A sufficient number of cycles of refinement are

performed to ensure convergence, at which time Rmin, the

overall value of R(’) for all the phases, will approach its global

minimum. The value of Rmin is generally significantly less than

0.5 for the correct solution, and greater than 0.5 for all the

various non-solutions. A solution is usually not obtained in

those instances where there is no clear separation in Rmin

values. Fig. 1 compares the progress of a typical SnB solution

versus a non-solution with regard to the computed value of

Rmin and its associated average mean phase error, h|�’|i =

h|’true � ’cal|i, as a function of the SnB phase refinement cycle

number.

Once a solution has been obtained, one characteristic of

well determined phases is that the values of R(’h) for the

individual phases should increase dramatically upon

perturbing the value of ’h by 0, �90, 180� from their solution

values. Conversely, if there should be little difference among

the four R values, then there would be no particular reason to

believe that any one of the four permuted values would be any

better than the other three. Having made this conjecture, one

might also ask the same question with regard to SnB phase

sets that have not fully converged to a recognizable solution.

That is, might a large variance indicator for any R(’h) still be

correlated with how well that phase has converged toward its

true value? We decided to examine this possibility.

3. Numerical tests

Four moderately large P212121 structures each having about

100 non-H atoms in the primitive unit cell were selected.

Firstly, it will be necessary to be able to evaluate h|�’|i for any

SnB trial with the known structure relative to some unknown

choice of origin and enantiomorph. It is a fairly trivial matter

to do this in the space group P212121 by simply examining

the 16 permissible choices of origin and enantiomorph and

selecting the choice with the smallest phase error. Secondly, it

is well known as a point of interest that single-atom search

models often generate initial trial sets with a significantly

lower h|�’|i than N-atom models (Weeks et al., 1994). Table 1

lists the one-atom phase errors for the starting sets of phases

corresponding to each of the N atoms of the four known

structures chosen. For the purpose of the following study we

temporarily ignored all those single-atom starting sets that

subsequently produced SnB solutions upon further refine-

ment, or between 3 and 34% of all sets depending on the
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Figure 1
Example of the SnB progress of a solution versus a non-solution. The
heavy line marks the value of Rmin as a function of SnB cycle number for a
solution, the value for Rmin drops significanly below 0.5 at about cycle 10.
The h|�’|i associated with this trial (dot-dashed line) rapidly decreases to
�10� once this is achieved. Rmin for a typical non-solution (fine line)
seldom reaches as low as 0.5, while its associated h|�’|i (dotted line)
hovers near that for randomly generated phases in the vicinity of 85 to
90�.

Table 1
Unrefined one-atom phase sets.

Phase errors, �’ = h|’cal � ’true|i, were computed from the N one-atom sites for four light-atom structures containing no atom larger than oxygen. The number of
phases used in the SnB analysis and the percentage of N trials that proceeded to solutions are given. The range, mean and standard deviations of the N sets are
cited. Also listed is the percentage of phase sets, each undergoing 100 SnB cycles of random N-atom refinement, excluding solutions, that attain �’ less than 80 and
75�.

Structure No. of atoms N No. of ’’s No. of triples % Solutions �’ range (�)
�’ � standard
deviation (�) < 80� (%) < 75� (%) Reference

ILED 84 840 8000 34 68! 87 78 � 4 30 9 (a)
FILE4 95 800 9000 15 66! 88 79 � 5 28 5 (b)
TERN 110 700 7000 3 70! 87 79 � 4 31 3 (c)
FILE5 117 900 10000 9 68! 89 82 � 5 23 4 (d)

References: (a) Pletnev et al. (1980); (b) Pletnev et al. (1991); (c) Miller et al. (1993); (d) Pletnev et al. (1992).



accuracy, resolution and completeness of the data and the

structural complexity, as indicated in Table 1. In this way we

can focus our attention on just those phase sets that are on the

edge of refining to a solution but fail to converge upon further

SnB cycling. Structures containing considerably more than 100

atoms were excluded from this analysis because their one-

atom phase sets seldom have h|�’|i less than 80� and cannot be

considered to be on the edge of convergence to a solution.

We initially performed our variance analysis of R(’h) using

the standard four-point SnB parameter shift protocol, but later

adopted an eight-point scheme since those results appeared

more convincing. Thus, given each one-atom starting set

meeting the criteria above, the individual variance of each

phase was computed from each of eight permuted values

of R(’h) representing progressive 45� shifts in the original

value of ’h. The standard deviation of R(’h) is �(R) =

[hR2
j i � hRji

2]1/2, where Rj is the value of R(’h + j � 45), and

hRji indicates the average value computed from these eight

points. The phases were next sorted on their values of �(R),

and h|�’|i was determined for groups of �50 phases as a

function of �(R). The result of a typical analysis having an

overall h|�’|i of 78.5� is shown in Fig. 2.

Let nmin be the particular value of j for the minimum value

among the eight Rj values cited above and, similarly, nmax for

its maxima. Next we investigated how this error compared

for subgroups of phases based on the values of nmin and

ndel = |nmax � nmin|, the number of shift increments observed

between the minimum and maximum values of Rj. Moreover,

since there are eight shift intervals spanning the range from 0

to 360�, we shall treat a shift of n � 45� as being Friedel

equivalent to a shift of (8 � n) � 45� should the value of n

exceed 4. In this way the values of nmin and ndel can both be

expressed as values from 0 to 4, or from 0 to 180� in incre-

ments of 45�. Given these rules the data presented in Fig. 2 can

be re-sorted into groups based on the values of nmin and ndel,

where a new pattern emerges (Fig. 3). We now see that the

groups (0, 4), (1, 3) and (2, 2), which represent about half of

the total number of phases, are similar in that they produce a

slanted line that is much steeper than that indicated in Fig. 2.

Conversely, all the remaining sets excluding those previously

mentioned produce a line that is significantly flatter than that

shown in Fig. 2. Thus, it appears that when �(R) is large it is

more likely that the true phase value is 180� from the max-

imum of R(’h), rather than being closer to its minimum.

We next wanted to determine whether N-atom SnB phase

sets having h|�’|i in the range of 75 or 80� behaved similar to

the one-atom sets described above. To test this a large number

of random N-atom phase sets for the four known test struc-

tures were refined by the SnB program and non-solution phase

sets for which h|�’|i dipped below the 75 and 80� thresholds

were collected. These phase sets were subjected to a �(R)

analysis and shown to produce a slanted line similar to that

indicated in Fig. 2, which indicates that h|�’|i is smaller for

those phases having larger �(R) values. Re-plotting the data

according to their (nmin, ndel) values, however, does not indi-

cate that the (0, 4), (1, 3) and (2, 2) groups are any better than

any of the rest, i.e. all groups appear to behave the same.

To follow up on this, 1000 random N-atom trials were

generated and subjected to 200 cycles of SnB refinement for

each of the four test structures. The percentage of those trials

that produced SnB solutions for each of the four test struc-

tures is noted in column 2 of Table 2. However, particular

attention was now paid to those trials that had h|�’|i less than

80 or 75� at some time during their refinements, but failed to

converge to a solution, which are reported in columns 3 and 6,

respectively. The fraction of those trials which converged

(Cng%) to a solution after crossing the 80 or 75� thresholds

are noted in columns 4 and 7, as are the average number of

cycles (h#i) for which h|�’|i remained less than the 80 and 75�

thresholds.
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Figure 2
A plot of h|�’|i as a function of the value of �(R)/R(’h)min for the 84-atom
ILED structure. The overall average h|�’|i for the 84 one-atom phase sets
was 78.5�. The data were sorted in descending order on the value of �(R)/
R(’h)min for each phase and averaged in groups of 50 phases. This plot
was made using the program Prism.

Figure 3
A re-plot of the data presented in Fig. 2. The data were first sorted
into groups based on the values of (nmin, ndel), as explained in the text.
The data represented by groups (0, 4), (1, 3) and (2, 2) were then plotted
together as is shown by the lower solid line. All the remaining groups
were then merged and plotted as the upper dashed line in the figure.



Several ideas were pursued with regard to exploiting the

information provided by the subsets of phases having a lower

h|�’|i value that were identified. Firstly, several ad hoc

weighting schemes were devised in an effort to take advantage

of the observed �(R) phase error distribution shown in Fig. 2.

The weights for the phases can be determined in the first SnB

pass through the phases to compute �(R), in which case the

phases are not refined. The list of �(R) values was sorted in

descending order and weights for the individual phases were

assigned by various schemes to increase from 0 to 1 as �(R)

approached is maximum value. These weights were then

temporarily applied to Ah,h as wt(h)wt(k)wt(�h � k) Ah,k in

the second pass in which the phases are refined. A second

scheme simply involved holding the better-determined phases,

say the top 25% based on �(R), fixed for a limited number of

cycles while the remaining phases were refined by the SnB

procedure in the hope that they would converge toward their

solution values. Thirdly, a variant of this latter procedure

(Langs et al., 1995) allowed the set of better phases to be tested

against a small number of sets of random values for the

remaining phases. In this regard the SnB program was run ab

initio for each of the four test structures and the �(R) analysis

was performed on the non-convergent phase sets for which

h|�’|i was in the range 75– 80�. The better-phased subsets that

were identified were used as the basis for testing the effec-

tiveness of the three refinement schemes described in this

paragraph.

4. Discussion

The data presented in Table 1 indicate that the range of |�’|

values, h|�’|i and standard deviations are all very similar for

each of the four N ’ 100-atom structures. The SnB success

rates vary, however, based on the accuracy, completeness and

resolution of the data and other less well defined structural

peculiarities. As a point of information it is cited that although

34% of the 84 one-atom trials for the ILED structure will

actually converge to an SnB solution (column 4, Table 1), none

of these same phase sets will converge if subjected to standard

tangent formula refinement. However, somewhat constant for

all four structures are the percentages of SnB trials that

encounter phase sets that have h|�’|i less than 75� (3! 9%)

or 80� (23 ! 31%), without converging to a

solution, as is shown in the last two columns of

Table 1. Thus, even though a solution was not

found in these particular cases, there was the

expectation that many of these phase sets might

have converged if subjected to a �(R) analysis to

identify subsets of phases with h|�’|i in the

vicinity of 60� or less.

The results presented in Fig. 3 for the one-atom

phase analysis sorted on nmin and ndel are both

surprising, and a bit puzzling. Whereas h|�’|i

ranged between 45 and 90� as a function of �(R)

for unsorted results as shown in Fig. 2, we see

they now range between 25 and 90� for groups

(0, 4), (1, 3) and (2, 2) and 55 to 90� for all the

other groups. Moreover, what is not shown is that if one

were to apply the nmin shift to those phases in groups (1, 3)

and (2, 2), which is to follow the SnB convention, the h|�’|i

becomes larger. Thus, although large �(R) values help identify

the better-determined phase values, the shifts suggested by

R(’h)min can actually lead away from the solution! At least for

unrefined one-atom phases, it is actually better to accept those

phase shifts that are 180� away from R(’h)max, rather than

those that are closest to R(’h)min.

A slightly different pattern arises for the non-convergent

N-atom phase sets for which h|�’|i occasionally dipped below

75 or 80�. Although the larger �(R) values also indicate groups

of phases with a lower h|�’|i, as indicated in Fig. 1, there is

nothing to be gained by re-sorting the phases into groups

based on the values of nmin and ndel as the patterns for these

groups all have the same general shape. One obvious differ-

ence between the one-atom and N-atom phase sets having the

same relative phase errors is that the one-atom sets corre-

spond to actual atomic positions, but the vast majority of the

N-atom sites most probably do not.

The question may arise as to how frequently one may

expect to encounter random atom phase sets which have h|�’|i

less than 75 or 80� in the course of an SnB refinement. Table 2

indicates that between 7.5 and 9.0% of the random trials will

experience a phase set with h|�’|i less than 75�, and that this

will occur between 10 or 13 times during the phase refinement

for those particular trials for the four test structures examined.

In most instances, these occur as a string of consecutive

refinement cycles for which h|�’|i remains low, until it even-

tually diverges. Likewise, if the h|�’|i threshold is raised to 80�,

the fraction of random trials that encounter phase sets lower

than this threshold logically increases to between 27 and 38%.

Likewise, the average number of times this will occur during

the refinement also increases to between 17 and 27 times.

Thus, if a �(R) analysis was perfomed every ten or so cycles,

there is a good likelihood that one would not miss catching the

refinement at some low point in h|�’|i before it diverged to

become larger.

The results from comparing the three weighted SnB

refinement schemes based on an initial SnB subset of better-

determined phases were not as encouraging as initially hoped.

The weighted SnB formulation only moderately increased the
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Table 2
Results for a total of 1000 random N-atom phase sets each refined for 200 SnB cycles.

The percentage of solutions that were observed is noted in column 2. The percentage of all
non-solution sets for which h|�’|i is less than 80 and 75� are given in columns 3 and 6,
respectively. The percentage of the total number of sets, solutions and non-solutions that
converged to the solution (Cng%) after crossing the 80 and 75� thresholds is noted in columns
4 and 7. The average number of times h#i during the 200 cycles of refinement that h|�’|i dips
below those thresholds are noted in columns 5 and 8. In general it may be stated that whenever
h|�’|i dips below these thresholds, the phase error could well remain beneath those thresholds
for the next 5 to 20 consecutive refinement cycles.

Structure % Solutions < 80� (%) Cng% (%) h#i < 75� (%) Cng% (%) h#i

ILED 18 31 37 18 9 66 13
FILE4 4.6 27 15 27 8 36 10
TERN 0.3 38 0.8 17 7.5 4 11
FILE5 4.5 38 10 22 9 33 10



random-atom success rates of the ILED, FIL4 and FIL5

structures by a factor of 10% at most (i.e. from 18 to 20% for

ILED and about 4.5 to 5% for FIL4 and FIL5), but the success

rate for the TERN structure increased from 0.3% to as much

as 2.5% depending on the mean phase error and relative size

of the fixed basis set selected. This most certainly should be

viewed as an eightfold increase in the success rate rather than

a mere 2% improvement. Simply holding the basis set phases

fixed for a number of cycles without the benefit of weights for

refining the remaining phases (scheme 2) usually did not move

them in the direction toward the solution. It was far more

effective to replace the remaining phases with random-atom

values and explore a small number of such random sets in the

hopes of producing a solution that the overall Rmin figure of

merit can decisively identify, or continue the standard SnB

refinement to resume this multi-solution stance again 10 or 15

cycles later. It is rather disappointing that a much larger

fraction of sub-80� phase sets could not be induced to produce

convergent solutions in spite of successfully identifying

significant subsets of phases with h|�’|i in the vicinity of 60�.

Thus, although the variance of R(’h) appears to be a powerful

tool to identify such subsets, its simple minimization is not so

effective as to determine the remaining phases accurately. This

is a strange observation since it runs contrary to our experi-

ence and expectations from using relatively small blocks of

similarly well determined phases computed from molecular

fragments or inferred from crystal derivative data. Similar

efforts to encourage these sets to converge to solutions in

the realm of real space, through maps whose E values were

appropriately weighted by their expected phase accuracy

based on the variance of R(’h), only marginally improved the

success rates. Also, random peak omission (Sheldrick et al.,

2001), which often produces a marked 40–50% improvement

in the normal random SnB success rate, was surprisingly much

less effective when applied to these reluctant-to-converge

phase sets.

5. Summary

A method for identifying better subsets of phases from SnB

trials that have not fully converged to solutions has been

outlined based on the variance of the R(’) value for the

individual phases. The method appears to work as long as the

overall h|�’|i is less than 80�, which is considerably larger than

what may have initially been conjectured. Although phase sets

meeting this criterion are fairly common in SnB analyses of

structures containing 100 or more atoms in the asymmetric

unit, perhaps affecting one in every three random SnB trials, it

remains to be demonstrated whether a more robust solution

convergence scheme can be devised to take advantage of this

unexpectedly frequent situation.
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